
t

DOCUMENT RESUME

ED 076 212 LI 004 317

AUTHOR Ehat, U. Narayan; Nance, Richard E.
TITLE Dynamic Quantum Allocation and Swap-Time Variability

in Time-Sharing Operating Systems.
INSTITUTION Southern Methodist Univ., Dallas, Tex. Computer

Science/Operations Research Center.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO TR-CP-73009
PUB DATE Apr 73
NOTE 20p.; (16 References)

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS *Computer Programs; Compute ; *Comput.er Science;

Mathematical Models; Program Effectiveness; Time
Sharing

ABSTRACT
The effects of dynamic quantum allocation and

swap-time variability on central processing unit (CPU) behavior are
investigated using a model that allows both quantum length and
swap-time to be state-dependent random variables. Effective CPU
utilization is defined tc be the prcportion of a CPU busy period that
is devoted to program processing, i.e. the time not spent in
swapping. Using this measure compu-zational results are derived for
four cases: (1) both quantum and swap-time constant, (2) varying
quantum and constant swap-time, (3) constant quantum and varying
swap-time, and (4) both quantum and swap-time varying. An allocation
strategy that reduces the quantum as the number of tasks in queue
increases proves superior to both a strategy elat increases the
quantum and to the common constant quantum strategy. Swap-Time
variability is shown to have a more pronounced effect then quantum
variability. (Author)

nS
L)
r--

w

INN
Im00

FILMED FROM BEST AVAILABLE COPY

(Technical Report CP-73009)

DYNAMIC QUANTUM ALLOCATION

AND

SWAP-TIME VARIABILITY

IN

TIME-SHARING OPERATING SYSTEMS

U S DEPARTMENT 3F HEALTH
EOUCATION & WELFARE
OFFICE 01 EDUCATION

THIS DOCUMENT HAS SE c N
DUCED EXACTLY AS RETAIL ED II.
THE PERSON OR ORGANI2AT,GN CR,
MATING IT POINTS Of 'REA OR ,)FRIL
IONS STATED DO NOT NE(ES,
REPRESENT OFFICIAL c L
CATION POSITION OR PO

U. Narayan Bhat
Department of Computer Science and Operations Research

Institute of Technology
Southern Methodist University

Dallas, Texas

and

Richard E. Nance
Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, Virginia

April 1973

Research supported by NSF Grant GK-19537.

We wish to acknowledge the helpful suggestions and comments of Dr. James E.
Kalan luring the course of this research.

ABSTRACT

The effects of dynamic quantum allocation and swap-time vari-

ability on central processing unit (CPU) behavior are investigated using

a model that allows both quantum length and swap-time to be state-

dependent random variables. Effective CPU utilization is defined to

be the proportion of a CPU busy period that is devoted to program

processing, i.e. the time not spent in swapping. Using this measure

computational results are derived for four cases: (1) both quantum

and swap-time constant, (2) varying quantum and constant swap-time,

(3) constant quantum and varying swap-time, and (4) both quantum

and swap-time varying. An allocation strategy that reduces the quantum

as the number of tasks in queue increases proves superior to both a strategy

that increases the quantum and to the common constant quantum strategy.

Swap-time variability is shown to have a more pronounced effect than

quantum variability.

Keywords: dynamic quantum alloctation, swap-time variability, effective
CPU utilization, semi -Markov model, time-sharing system.

Computing Reviews categories: 4.3.

INTRODUCTION

With a time-sharing operating system, a single program is given

control of the central processing unit (CPU) until execution is com-

pleted or a maximum time limit is reached. This time slice, called

a quantum, is followed by a period during which the CPU is controlled

by the operating system while control of the CPU is removed from

program and assigned to another. This duration is called the overhead

or swap-time.

A quite natural view is that the quantum represents a period of

effective processing while the swap-time is a necessary but nonproductive

time requirement. However, in a relatively heterogeneous environment,

characterized by several program priority levels, the scheduling

algorithms invoked to assign control of the CPU can become complex

and time-consuming. A thorough explanation and summary of scheduling

algorithms is presented in the text by Coffman and Denning [6].

The quantum length decision is typical of the trade-off situations

so often encountered in the design of computer hardware and software.

A prime consideration is the "single user illusion", i.e. the need

to make each user feel that the complete capability of the computer

system is available to him. The "single user illusion" suggests a

relatively short quantum so that, even in a high demand situation,

each program is being assigned the CPU rather frequently. A counter

consideration, however, is the increased overhead incurred for transferr-

ing CPU control. With a shorter quantum the proportion of a fixed

time period devoted to overhead increases (since more swapping results).

These two contrary considerations reflect the more general competitive

views that we have termed the user and operator perspectives [1].

While the quantum length decision has been resolved typically

by establishing a constant value that appears to work well over the

varying demand periods and for the various user classes, an interesting

possibility is to allocate varying length qoantum dynamically. Con-

sequently, the time for which a specific program controls the C ?U can

vary depending on the current CPU demand, i.e. the number of programs

in queue. Also of interest is the ability to vary swap-time as well.

The model developed in this research explores the effect of

dynamic quantum allocation on CPU behavior. Additionally, and even

more significant, we note the change in CPU behavior stemming from

swap-time variability. Computational results are included to illustrate

the range of behavior for a hypothetical time-sharing system.

QUANTUM ALLOCATION AND SWAP-TIME VARIABILITY

Quantum allocation

A benefit of allocating quantum of different lengths it that higher

priority programs are processed quicker than lowei ones. This of course

benefits only a certain class of users. Adopting the operator's pers-

pective, rather than the user's, what benefits are realized from the

allocation of variable quantum lengths? Aside from the corequisite to

the urer benefit, i.e. matching service to rf..4 more appropriately, the

answer is hopefully an increase in the effective use of the CPU. Time-

sharing system designers long ago recognized the wasteful overhead

incurred when a few (say only two) CPU-dependent programs are seeking

service. The accumulated overhead required for swapping the CPU be-

tween only two programs represents an inefficiency that, if removed

-3-

by running each program to completion without swapping, can be avoided

generally without a noticeable decrease in service. Another argument

favoring variable quantum allocation is that a large number of

programs in queue can result from certain ones requiring excessive

CPU time, and a means for correcting this situation is to provide

longer processing periods for each program. This strategy can affect

the "single user illusion" detrimentally during a short period, but

avoids a gradual deterioration in response time over a longer interval.

Little is known about time-sharing system behavior under dynamic

quantum allocation. Coffman [3] proposes two discrete time models

that classify jobs as requiring a single quantum or multiple quanta.

In the summary of his paper, Coffman [3, p. 352] notes the need for

generalizing the models "to include an arbitrary 'quantum-function' of

the number in the system." Heacox and Purdom [9] extend Coffman's

model to allow adjtstment of the number of quanta given to a program

based on the arrival rates of programs. Also, they assume a constant

non-zero swap time; whereas Coffman considers swap time to be negligible.

Chang [2] considers a case where different distributions of

quantum length can be adopted under the assumption of a "look-ahead"

capability, i.e. if the program is to complete its processing in the

next quantum, its service time follows a distribution different from

the usual. The assignment of a different quantum accomodates short

debugging runs as the author mentions [2, p. 122].

-4-

Swap time variability

Swap time or overhead is considered negligible in some models

[4,5,11] and a constant value in others [9,13]. The amount of time

required for switching CPU control from one program to another is

quite dependent on the complexity of the algorithms used for

scheduling and resource allocation, i.e. assigning disk space, tape

drives, peripheral devices, etc. to a particular program. As the

operating system attempts allocation of its resources to reduce

the average processing time per program, more time is required to

determine the proper assignment. But even with less complex re-

source allocation methods, the swap time for a single transfer of

CPU control is dependent on the number of programs in the system,

i.e. with more programs seeking service, more comparisons must be made

to determine the program assigned CPU control.

The model

We begin with the assumption of a single CPU that performs all

tasks related to the swapping of programs. Our objective is to deter-

mine the effective utilization of the CPU under different conditions

for quantum allocation and swap time. Effective CPU utilization (U)

is defined to be the ratio of the expected amount of actual processing

time during a CPU busy period [1, p. 223] to the expected length of

the busy period, i.e.

U = E {total actual processing time} = 1 - E{total swap time
E{busy period) E {busy period}

-5-

This measure -- effective CPU utilization -- should be distinguished

from that used by Gayer [7, p. 424], which he calls CPU productivity

CPU productivity = E {busy period}
E {busy period} + E{idle period}

The CPU productivity measure, subsequently termed CPU utilization by

Shedler [16] and Gayer and She.ler [8], is a mr'asure of the expected time

the CPU is processing programs during an expected operating period

(this is denoted as the busy cycle [1]). Note that an idle period,

i.e. CPU idleness, is defined to be that period during which no programs

are seeking ; ervice (the system is empty).

By defining effective CPU utilization to reflect only the loss of

time due to swapping, we have excluded some additional sources of CPU

idleness. For instance, the case where the CPU is idle because all

programs are completing I/O activities is ignored. In effect we ace

counting only a portion of the time the system is in supervisor mode

[15, p. 313] as contributing to a loss in effectiveness. This is

justified since we wish to investigate the effect of quantum allocation

and swap-time assumptions on the CPU behavior. Time required for tasks

other than swapping might remain in an environment with no time-sharing,

e.g. a serial batch operating system. Moreover, the time in supervisor

mode not related to swapping is dependent on the individual progra

and the mix of programs rather than on decisions related to swap time

and/or quantum allocation.

We assume the following conditions:

(1) a time-sharing system using some feedback discipline and
to which programs are submitted via an input device,

(2) N input devices potentially can access the CPU, i.e. sub-
mit a single program at a time to the CPU,

(3) demand for the CPU by a "free" input device is Poisson, i.e.

for a "free" input device at time t

-6-

Prfinput device demands the CPU during (t,t+dt]}

= Adt + o(dt),

(4) the processing times of submitted programs are imdependent,
identically distributed negative exponential random variables
with mean l/p, and

(5) the probability of more than one event in the interval
(t,t+dt] is negligible, i.e. o(dt).

Now in the most general case the programs are processed in some order

for a period of time that does not exceed the quantum, a positive

value assumed by the random variable Qi (where the subscript indicates

a possible dependency on the number of programs currently seeking

control of thP CPU). If the processing of the program is completed

within the quantum, it exits from the system; otherwise, the program

surrenders control of the CPU to another program and remains to seek

further service. In either case a swap time Di is incurred, with Di

a random variable (again, possibly dependent on the number of programs

seeking service). Thus each program requires one or more processing

periods (Qi+Di), which are called tasks.

Within a CPU busy pe-iod, let the completion of a task at to de-

fine the origin of observations of the process of task completions.

Observations of the task completion process are marked by an ordered

pair (t0,J0), (t1,J1), (t2,J2) ... where t0, t1, t2, ... indicate the

time epochs, and Jo, J1, J2, ... record the number of programs in the

system at the respective time points. Let Zn(i) be a random variable

nthrepresenting the task completion time for the n-- task, conditioned on

st
i programs seeking the CPU on completion of the (n-1) task, i.e.

for J
n-1

=i

Z
n
(i) = to - to

-1
(n=1,2,...).

nth
1

ThenalettzedevotedbytheMtothentask(B.(t)) for specific

realizations of Qi and Di, i.e. Qi=qi and Di=61, is given by

t<61.,

-1-1(t-di

1

)

B (t) = Pr{Z
n'
(i)<t) = 1-e 6.<t<6

i 1
+q.

'

1 6
i
+q.<t.

We denote the Laplace-Stieltjes (LF) transform of dBi(t) by 13i(0) where

Let

Then

i(0) = r e
-0

tdBi(t)

Y (x) = Pr {Di <x),

di = EfD)
'

and

a (0) = f j e_ exdY (x) .

0

-(0+p)q]
1.(e) = ai(0) [+0e

0+p

and the expected value of Zn(i) is determined by

EIZn(i)) = - 13;(0) = fli

where

ni p-1(1ePcii)

[Re(0)>0].

Before continuing we note that three special cases can exist for

the general form given above for f3i(0). These cases relate to the

assumptions with respect to quantum and swap-time:

(1) constant quantum and swap-time,

(2) constant swap-time, variable quantum, and

(3) constant quantum, variable swap-time.

-8-

All four cases (the fourth considering both as state-dependent random

variables) have physical significance in the modeling of time-sharing

systems.

In the first case, the effective utilization of the CPU (U) is

determined simply as

U = 1 - 6 6<n

(since the swap-time and quantum are both constant neither 6 nor n

is subscripted). The result in this case is developed in a paper by

Kleinrock [12], using an approach based on the expected waiting time

of programs and assuming loss of the remaining portion of a quantum

after a program's completion. The remaining three cases require a

more extensive analysis which we develop in terms of the most general

conditions, i.e. both swap-time and quantum assumed to be random vari-

ables. Development of the initial relationship below is presented

in more detail in previous papers [1,14].

As defined above the ordered pair (tn,Jn) provides the information

on the number of programs in the system just after the task completion

epoch tn. The sequence {Jn,Zn(i)} describes a semi-Markov proce!.s

with the distribution function for state transitions within the interval

(0,x] for this process given by

A
ij

(x) = PrO
n
=j, Z

n
(0<x1J

n-1
=11.

For the case where Qi=qi and Di=6i, these transition probabilities art,'

determined as

-9-

-p(x-(5)
-fix N-i

pe (e) dx 6.< x + q.
1

0

-11(x-6)
N -ii I

j-i+
(1-e-Ax)j-i+1

.(e
-Xx

)
N-j-1

-dx 6.< x < (si
1

-P(6i4-qi) tN-i Ni -X(6i+cli)li-i -X(6i+cli) N-j
e

h(di+qi-x) i=1,2,..., N; ifj

where h(z) is the Dirac delta function, i.e.

if z=0
h(z) =

0 otherwise.

In the more general case, with Qi and Di as random variables, we have

(e) 'm 0 (0[11+6Y 0+0]

0+p

where yi(0) is the LS transform of the distribution function for terminal

access during the quantum period, denoted by Ci(y). Then

dAi,i_i ,(xl = r ..opir(Y'x) -14olpe-- dY (x-t)(e-Ax)N-idCi(y) x29

dA
ij
(x) _fp dC

i t
(-d min(Y'x)pe-litdY (x-t)

y=0 0

.t N-i
(1-e

-Ax
)
j-i+1

(e
-Ax

)
N-j-1

j-i+1)

+Jr.
y=0

dC (y)e-PYdY (x-y)

(7::)
(1-e

-Ax
)(e

-Ax
)
N-j

j>i, x>0

-10-

Let a
ij

(e) be the LS transform of dA
ii 9

(x) i.e.

a
ij

(e) =
jm.

e
-ex

dA
ij

(x)
'

Re(e)>0.

Then from above we have, after some simplifications,

and

ai,i-1 (0) = 1.0 I
i

fl-yi[e+p+A(N-i)]

e+p+A(N-i)

j-i+1
/ N-i \ 7 (_ilkij-1-1-1N,air.

U-1-(14 j+k-1)]
ij` ' \ji+V L

k=0
i k)"

1-yi [0+11+(N-j+k-1) A]

e+p+(N-j+k-1)A

Ni3OiJ, 1) Ji r+ (j_iq L k--,k()ciLe+(N-j+k)A]
k=0

. y
i
[e+p+(N-j+k)A] i>i

constituting the LS transforms of the transition probabilities for the

subdiagonal and general terms respectively.

Now, consider the process {Jn, n=0,1,2 }. It is a finite Markov

chain with state space {0,1,2,,N}. Further its transition probabilities

are given by

imw0
dA

ij
(x) = a

ij
(0)

which we denote as aii, i,j=0,1,2,, N. Denoting the matrix of transition

probabilities as A, we obtain

A

MI.

a00 a01 a02 aON

a10 a
10 11 a12 alN

a20 a
20 21 22 a2N

...
aNO aNl aN2

a
NN

-11-

which WE partition accordingly

OM.

A =

a 'a
00 I

a
10

a
20

a ...
01 02

a
ON

H

aN
0

From the theory of finite Markov chains [10], we know that the

th
element of (I-H)

-1
represents the expected number of visits of

the process to to state j before entering state 0 (which designates

the en,1 of the busy period), having started originally from state i.

Whenever the process visits state j, it spends an expected length of

timenJ .(.inswappingandv.in processing) before the subsequent
J

task completion. Thus we have

(I-H)
-1

(n-6) = v

where n is the vector of expected task completion times (determined by

the values assumed by Qi and Di) and v is the vector of expected processing

times. The elements of the vector v are therefore obtained from the re-_

lation

n-d = (I-H)v.

Similarly the expected time devoted to swapping b is determined by

d = (I-H)b .

Note that the elements of v and b corresponds to the number of programs

seeking control of the CPU at the initiation of a busy period. Extending

our previous statement regarding effective utilization of the CPU to a

vector, we have

Ui vi i(v
i
+13) i1,2,...,N.

COMPUTATIONAL RESULTS

For computational comparisons we assume a system with ten peri-

pheral devices accessing a single CPU. The mean access rate (A) is .005/ms

and the mean processing rate (p) is .05/ms. Beginning with a constant

swap-time of 10 ms and constant quantum of 150 ms, we derive the expected

CPU utilization to range from 63.968 to 66.654 (all values given as per-

cent utilization). Beginning with values near 65 percent seems warranted

with respect to current systems although these values can vary widely.

The effect of choosing different constant quantum values is shown

in Figure 1. By decreasing the quantum from 150 ms to 50 ms, a drop of

approximately two percent effective CPU utilization is experienced.

However, by increasing the quantum from 150 ms to 250 ms, no practical

improvement is realized. To prefer 50 ms to 150 ms for an operational

value requires some considerations of the user perspective, but that no

advantage resides with the choice of 250 ms over 150 ms is obvious.

By implementing dynamic allocation of quantum length, some interesting

results can be observed. Figure 2 reveals that by varying the quantum

value directly with the number of tasks in queue, we incur almost a

two percent drop in effective CPU utilization assuming initially

that the busy period begins with a single program in queue. This

disadvantage is removed as the number of programs initially seeking

CPU control increases, i.e. for heavy demand environments, no advantage

is apparent in increasing the quantum with an increasing demand.

However, by adopting the strategy of reducing the quantum with increasing

demand we effect an increase in effective CPU utilization. Although

6
7

-

6
6 6
5

6
4 6
3

a

b

a b

V
A
L
U
E
S

F
O
R

Q
U
A
N
T
U
M

A
R
E
:

a
.

q
i
=
1
5
0

m
s

V
i

b
.

q
i
=

5
0

m
s

V
i

q
.
=
2
5
0

m
s

V
i

1
2

3
4

5
6

7
8

9
1
0

N
u
m
b
e
r

o
f

P
e
r
i
p
h
e
r
a
l

U
n
i
t
s

I
n
i
t
i
a
l
l
y

A
c
c
e
s
s
i
n
g

C
P
U

F
I
G
U
R
E

1
.

E
F
F
E
C
T

O
F

C
H
O
I
C
E
S

F
O
R

C
O
N
S
T
A
N
T

Q
U
A
N
T
U
'
i

W
I
T
H

S
W
A
P
-
T
I
M
E

C
O
N
S
T
A
N
T

(
6
i

=

1
0

m
s
)
.

6
7

6
6

6
5 6
4

6
3

2

2

A
L
L
O
C
A
T
I
O
N

S
T
R
A
T
E
G
I
E
S

A
R
E
:

(
1
1

c
o
n
s
t
a
n
t

Q
u
a
n
t
u
m

o
f

1
5
0

m
s

(
2
)

q
u
a
n
t
u
m

l
e
n
g
t
h

v
a
r
i
e
s

d
i
r
e
c
t
l
y

w
i
t
h

n
u
m
b
e
r

p
r
o
g
r
a
m
s

(
3
)

q
u
a
n
t
u
m

l
e
n
g
t
h

v
a
r
i
e
s

i
n
v
e
r
s
e
l
y

w
i
t
h

n
u
m
b
e
r

o
f

p
r
o
g
r
a
m
s

1

T

1
2

3
4

5
6

7
8

9
1
0

N
u
m
b
e
r

o
f

P
e
r
i
p
h
e
r
a
l

U
n
i
t
s

I
n
i
t
i
a
l
l
y

A
c
c
e
s
s
i
n
g

C
P
U

F
I
G
U
R
E

2
.

C
O
M
P
A
R
I
S
O
N

O
F

Q
U
A
N
T
U
M

A
L
L
O
C
A
T
I
O
N

S
T
R
A
T
E
G
I
E
S

4

-15-

small, this increase is interesting since the strategy of reducing

quantum length with increasing demand is also beneficial to the user.

In this instance at least the user and operator perspectives seem not

to be competitive. Note that the average quantum length is the same

in all three cases.

Further investigation of the results presented in Figure 2 is aided

by reference to Table 1. The components that determine effective CPU

utilization are shown in Table 1, and although the increase in expected

swap-time with reduced quantum length is evident, a more than compensat-

ing increase in expected processing time is realized.

Figure 3 shows the pronounced effec': of varying swap-time. In

one instance, swap-time increases with the increase in demand, possibly

reflecting the use of more complex scheduling algorithms with increased

load. In the second case the swap-time decreases with demand, indicative

of a contrary strategy -- employing simpler scheduling algorithms with an

increasing load. With either strategy an effect is induced. Note that

the average swap-time is the same in both cases (10 ma) and equal to

the value in the constant case (designated as c). The intersection of

the three curves at a single point is interesting, but we can offer no

obvious interpretation of this behavior. It might suggest that this

is an inherently stable point of behavior, i.e. the value of effective

CPU utilization which is insensitive to variations in swap-time strategies.

Numerical results for the fourth model, the general case where both

swap-time and quantum length vary,offer little new information. The

dominance of the swap-time is confirmed, and the dynamic allocation

of quantum exerts only a minor effect. Again, the allocation strategy

for both swap-time and quantum is constructed to produce average values

of 10 ms and 150 ms respectively.

N
u
m
b
e
r

o
f

T
a
s
k
s

i
n

Q
u
e
u
e

I
n
i
t
i
a
t
i
n
g

t
h
e

B
u
s
y

p
e
r
i
o
d

C
o
n
s
t
a
n
t

Q
u
a
n
t
u
m

(
1
:

4
i
.
1
5
0

V
i
)

V
a
r
y
i
n
g

Q
u
a
n
t
u
m

(
2
:

i
n
c
r
e
a
s
i
n
g
)

V
a
r
y
i
n
g

Q
u
a
n
t
u
m

(
3
:

D
e
c
r
e
a
s
i
n
g
)

E
x
p
e
c
t
e
d

S
w
a
p

T
i
m
e

E
x
p
e
c
t
e
d

P
r
o
c
e
s
s
i
n
g

T
i
m
e

E
f
f
e
c
t
i
v
e

C
P
U

U
t
i
l
i
z
a
-

t
i
o
n

Q
u
a
n
t
u
m

A
l
l
o
c
a
t
i
o
n

(
m
s
)

E
x
p
e
c
t
e
d

S
w
a
p

T
i
m
e

E
x
p
e
c
t
e
d

P
r
o
c
e
s
s
i
n
g

T
i
m
e

E
f
f
e
c
t
i
v
e

C
P
U

U
t
i
l
i
z
a
-

t
i
o
n

Q
u
a
n
t
u
m

A
l
l
o
c
a
t
i
o
n

(
m
s
)

E
x
p
e
c
t
e
d

S
w
a
p

T
i
m
e

E
x
p
e
c
t
e
d

P
r
o
c
e
s
s
i
n
g

T
i
m
e

E
f
f
e
c
t
i
v
e

C
P
U

U
t
i
l
i
z
e
-

t
i
o
n

1
7
.
5
1
2

1
5
.
0
1
5

6
6
.
6
5

5
0

7
.
3
7
2

1
3
.
5
3
5

6
4
.
7
4

2
5
0

8
.
5
6
3

1
7
.
1
2
6

6
6
.
6
7

a
1
0
.
4
0
5

1
9
.
9
3
1

6
5
.
7
0

7
5

1
0
.
2
4
6

1
8
.
9
3
6

6
4
.
8
9

2
2
5

1
1
.
7
2
5

2
2
.
9
3
6

6
6
.
1
7

3
1
1
.
9
5
6

2
2
.
1
7
7

6
4
.
9
7

1
0
0

1
1
.
8
3
3

2
1
.
6
6
2

6
4
.
6
7
.

2
0
0

1
3
.
3
4
7

2
5
.
6
6
3

6
5
.
7
9

4
1
3
.
1
3
3

2
3
.
8
5
4

6
4
.
4
9

1
2
5

1
3
.
0
5
1

2
3
.
6
0
7

6
4
.
4
0

1
7
5

1
4
.
5
8
0

2
7
.
6
6
9

6
5
.
5
1

5
1
4
.
3
4
0

2
5
.
6
9
8

6
4
.
1
8

1
5
0

1
4
.
2
8
9

2
5
.
5
8
2

6
4
.
1
6

1
5
0

1
5
.
8
8
2

2
9
.
8
8
6

6
5
.
3
0

6
1
5
.
8
2
0

2
8
.
1
2
9

6
4
.
0
0

1
5
0

1
5
.
7
8
2

2
8
.
0
6
0

6
4
.
0
0

1
5
0

1
7
.
4
9
6

3
2
.
7
1
0

6
5
.
1
5

7
1
7
.
8
2
4

3
1
.
6
4
3

6
3
.
9
7

1
7
5

1
7
.
7
9
8

3
1
.
6
0
7

6
3
.
9
8

1
2
5

1
9
.
6
9
6

3
6
.
6
8
3

6
5
.
0
7

8
2
0
.
7
8
4

3
7
.
1
5
2

6
4
.
1
3

2
0
0

2
0
.
7
6
4

3
7
.
1
3
5

6
4
.
1
4

1
0
0

2
2
.
2
9
6

4
2
.
6
8
5

6
5
.
0
6

9
2
5
.
7
0
8

4
6
.
7
7
4

6
4
.
5
3

2
2
5

2
5
.
6
9
2

4
6
.
7
7
0

6
4
.
5
4

7
5

2
8
.
1
4
5

5
2
.
5
1
1

6
5
.
1
0

1
0

3
5
.
7
0
8

6
6
.
7
6
3

6
5
.
1
5

2
5
0

3
5
.
6
9
2

6
6
.
7
7
0

6
5
.
1
7

5
0

3
7
.
7
0
1

7
0
.
0
4
3

6
5
.
0
1

T
a
b
l
e

1
.

I
n
d
i
v
i
d
u
a
l

C
o
m
p
o
n
e
n
t
s

o
f

E
f
f
e
c
t
i
v
e

C
P
U

U
t
i
l
i
s
a
t
i
o
n

f
o
r

T
h
r
e
e

Q
u
a
n
t
u
m

A
l
l
o
c
a
t
i
o
n

S
t
r
a
t
e
g
i
e
s
.

95

90

85

80

75

70

65

u0

55 _

50

a

-17-

SWAP-TIME REQUIREMENTS:
q: 6 =2i-1 Vi=1,2,...,10

o: 6 =20-(2i-1) Vi=1,2,...,10

6i =10 Vi=1,2,...,10

1 2 3 4 5 6 7 8 9 10

Number of Peripheral Units Initially Accessing CPU.

FIGURE 3. PRONOUNCED EFFECT OF VARYING SWAP-TIME WITH A FIXED QUANTUM (y105 ma)

-18-

CONCLUSIONS AND SUMMARY

Our investigation of dynamic quantum allocation and swap-time

variability has led to the following conclusions, all of which are

limited to the conditions specified for computational analysis:

(1) With a fixed quantum strategy, at some point an increase
in quantum length results in no practical improvement in
the effective CPU utilization.

(2) With a fixed swap-time, an improvement in effective CPU
utilization can be realized by a strategy of decreasing
quantum length with increasing demand.

(3) The effect of swap-time variability on the effective CPU
utilization is pronounced.

(4) While the dynamic allocation of quantum seems attractive
in concept, it seems to offer only a minor advantage in terms
of effective CPU utilization.

The fourth conclusion must be accepted only with respect to the operator

perspective as reflected by the effective CPU utilization. For the

user the advantage might be considerable.

The models developed during this research offer tools that are

both powerful and practical. Specific system configurations can be

conveniently investigated using the FORTRAN programs that produced the

computational results. These programs are also being used to investi-

gate further strategies involving both dynamic quantum allocation and

swap-time variability. Extensions of this research are directed to-

ward a more comprehensive sensitivity analysis and the identification

of "best" strategies.

REFERENCES

1. Bhat, U. Narayan and Richard E. Nance, "Busy Period Analysis of
a Time-Sharing System Modeled as a Semi-Markov,Process,"
J.ACM, 18 (2): April 1971, pp. 221-238.

2. Chang, W. "A Queueing Model for a Simple Case of Time-Sharing,"
IBM Syst. J., 5 (2): 1966.

3. Coffman, Edward G., Jr. "Analysis of Two Time-Sharing Algorithms
Designed for Limited Swapping," J.ACM, 15 (3): July 1968,
pp. 341-353.

4. Coffman, Edward G., Jr. and Leonard Kleinrock, "Feedback Queueing

Models for Time-Shared Systems," J.ACM, 15 (4): October 1968,
pp. 549-576.

5. Coffman, Edward G., Jr. and R. R. Muntz, "Models of Pure Time-
Sharing Disciplines for Resource Allocation," Proc. ACM
National Conf. 1969, pp. 217-228.

6. Coffman, Edward G., Jr. and Peter J. Denning, Operating Systems
Theory, Prentice-Hall, to appear.

7. Gayer, Donald P., "Probability Models for Multiprogramming Computer
Systems," J.ACM, 14 (3): July 1967, pp. 423-438.

8. Gayer, Donald P. and G. S. Shedler, "Processor Utilization in
Multiprogramming Systems Via Diffusion Approximations,"
Research Report NPS55GV720514, Naval Postgraduate School,
Monterey, California, May 1972.

9. Heacox, Harry C. and Paul W. Purdom, Jr. "Analysis of Two Time-
Sharing Queueing Models," J.ACM, 19 (1): January 1972,
pp. 70-91.

10. Kemeny, J. G. and J. L. Snell, Finite Markov Chains, D. Van Nostrand,
Princeton, New Jersey, 1960.

11. Kleinrock, Leonard, "Certain Analytic Results for Time-Sharing Pro-
cessors," Proc. IFIP Conf. 1968, Vol. 2, Amsterdam, pp. 838-845.

12. Kleinrock, Leonard, "Swap-Time Considerations in Time-Shared Systems,"
IEEE Trans. Computers, C-19 (6): June 1970, pp. 534-540.

13. Krishnamoorthi, B. and Roger C. Wood, "Time-Shared Operations with Both

Interarrival and Service Time Exponential," J.ACM, 13 (3):
July 1966, pp. 317-338.

14. Nance, Richard E., U. Narayan Bhat and Billy G. Claybrook, "Busy Period
Analysis of a Time-Sharing System: Transform Inversion," J.ACM,
19 (3): July 1972, pp. 453-463.

15. Sayers, Anthony P. (ed.), Operating Systems Survey, Auerbach Publishers,
1971.

16. Shedler, G. S., "A Cyclic-queue Model of a Paging Machine," IBM
Research Report RC-2814, IBM Watson Research Center, Yorktown
Heights, New York, 1970.

